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SUMMARY

Predicting users’ next location/place allows us to anticipate their future movement. It provides additional
time to be ready for that movement and react consequently. Furthermore, many industries, including Inter-
net Service Providers, are still requiring low cost and simple location/place prediction methods that can be
implemented on mobile device. This paper studies domain-independent prediction algorithms and spatio-
temporal based prediction method using 20-day-long records in Long Term-Evolution(LTE) network, which
captures the mobility patterns of 3474 individuals. After examining the prediction accuracy and resource
consumption of domain-independent prediction algorithms, we find Markov provides the best tradeoff.
Furthermore, Active LeZi outperforms Markov if enough consecutive parsed patterns of users’ history move-
ment are captured. In addition, we further group users according to their spatio-temporal entropy profiles in
order to predict not only user’s future locations but also the place he or she most likely to appear within a
specific period. By applying the simple spatio-temporal based method to each group of user, 83.3% accu-
racy can be achieved for some users. Yet Markov and Active LeZi algorithms perform better for some other
users. This implies that we should consider applying different prediction methods to users with distinct
spatio-temporal characteristics. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Location-based services on mobile device gain mainstream popularity. There is an increasing inter-
est in developing techniques that can predict user’s future locations. Location prediction capabilities
can be used in many scenarios, such as preheating home environment for the owner’s arrival or for
preemptive allocation of resources on cellular networks with expected heavy traffic. Furthermore,
many entities, such as mobile device, are still in need of techniques that can predict users’ loca-
tions with high prediction accuracy and do not cause computational overhead. There exists already
congested and overloaded networks with a large scale of users moving around simultaneously.
Therefore, overly complex prediction methods will be ineffective.

At present, the most detailed information on human mobility across a big city is collected by
mobile devices. Mobile devices recorded the closest mobile tower every time the user uses phone.
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In LTE network, the closest eNodeB is recorded when users use the mobile Internet. The location
information is updated every 12 min although user has been logout from LTE network.

In this paper, by using a 20-day-long record in LTE network, which is collected for traffic mon-
itoring and anonymized by the data source and capture the mobility patterns of 3474 individuals,
we focus on tracking and predicting user’s movement on user’s mobile phone because of several
reasons, namely:

(i) Protect the user privacy. All the locations that the user have been to would not be send through
the network;

(ii) Use all available data on mobile device. We could choose the preferred data collected by
mobile device, like Global Positioning System (GPS), WiFi or Global System for Mobile
(GSM)/Universal Mobile Telecommunications System (UMTS) data;

(iii) Be able to collect and predict offline. If the Internet is unavailable, the location-based
applications can still work in case the map is already downloaded on to mobile device.

However, making any kind of data processing in mobile devices needs to be concerned with
the processing speed, limited memory and battery. Thus, from the extensive collection of different
options, this work is focusing on some domain-independent prediction algorithms (Markov and
Lempel-Ziv (LZ) based algorithms) and simple spatio-temporal based method, which are able to
learn mobility patterns and estimate the probable location with low computational complexity and
resource needs. This makes it possible to execute them on mobile devices.

In this paper, we perform a comparative analysis of Markov, Lempel–Ziv (LZ), LeZi Update and
Active LeZi algorithms, and find that Markov is the best next location prediction algorithm applied
on mobile device that provides the best tradeoff between prediction accuracy and resource con-
sumption. Furthermore, our findings show a clear advantage on the adoption of different methods
to users with distinct entropy profile for location prediction as we obtain increased prediction accu-
racy (probability of correctness) at low computing cost. Spatio-temporal based prediction method
is more suitable for those who visit very limited locations during the day and follow regular pattern
during the week (family person). For those who spend much time on commute and follow fairly
regular pattern during the week (post person), the next location prediction is more efficient.

The remaining of the paper is organized as follows. In Section 2, the related works are reviewed.
Section 3 discusses the well-known location prediction algorithms such as Markov, LZ, LeZi
Update and Active LeZi algorithms that do not require complex computation. Section 4 provides
an overview of the collected mobility trajectories and the comparisons of prediction accuracy and
resource consumption for each domain-independent algorithm introduced in Section 2. Section 5
further classifies users into three groups according to their entropy profile. Afterwards, the spatio-
temporal based prediction method and the next location prediction algorithms are applied to
different groups of users to examine prediction accuracy. Finally, conclusions and future work are
presented in Section 6.

2. RELATED WORK

Individuals display significant regularity, as they tend to visit a few highly frequented locations,
like home or office. Numerous studies show that people’s movement trajectory is far from random.
By measuring the entropy of each individual’s trajectory, [1] achieved 93% potential predictability
in user mobility. When considering both the frequencies and temporal correlations of individual
movements, the theoretical maximum predictability can reach 88% [2].

Previous studies regarding location prediction include several models and methods. The usage of
well-known mobility models was originally applied in the area of location predication [3, 4], like
Bayesian approaches [5–7], neural networks [8], Hidden Markov models [9], Markov models [10]
and compression algorithms [11–13]. In addition, some recently proposed new algorithms [14, 15]
and frames [16–18] all presented very good results.

Recently, regarding the location prediction, scholars start to consider many other factors that could
influence the prediction results, like spatial context [4], temporal factors [19, 20], spatio-temporal
factors [21, 22] and even demographics (such as gender and age) [23].
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Among them, the authors considered some spatial contexts (user’s history trajectories, current
position, current direction and user’s neighborhood network cells) and proposed a short-term pre-
dictor to anticipate the future location of a mobile user in cellular networks [24]. It has been found in
[19] that human trajectories showed a high level of temporal and spatial regularity, and human move-
ments are far from random. Each individual has a time independent characteristic length scale and a
significant probability to return to a few highly frequented places. In [20], the authors used tempo-
ral factors, which significantly impacted randomness, size and probability distribution of people’s
movements to make simple prediction models for users’ visited places. The work conducted in [21]
explored the influence of the temporal and spatial dimension for the analysis of complex networks
extracted from mobility data. A spatio-temporal mobility model has been proposed in [22], which
extended a purely spatial Markov mobility model to effectively tackle the identification problem.

In addition, the mobility prediction with low resource consumption is gaining more and more
attentions. Rodriguez-Carrion [25, 26] assessed three LZ-based algorithms by separating each algo-
rithm into two independent phases (tree building and probability calculation) and further discussing
hit rate and power consumption. Results demonstrated that LZ-based algorithms could learn mobil-
ity patterns and estimate the next place with low resource needs, which makes it possible to apply
them on mobile devices. In [27], the authors proposed adaptive duty cycling scheme to provide con-
textual information about a user’s mobility: the mobility prediction-based time-resolved places and
paths. This efficient technique can maximize the accuracy of predicting meaningful locations with
a given energy constraint.

However, having widespread wireless localization technology, such as pervasive GPS, WiFi or
GSM/UMTS location estimation available for only the last few years, many factors that affect human
mobility patterns remain under researched. And mobility-based methods are urgently needed by
future technology [28, 29]. Apart from the previous work, we consider the effective prediction algo-
rithms (with low resource consumption and relatively high prediction accuracy) for distinct user
groups with different mobility pattern instead of using one prediction algorithm to handle all kinds
of users.

3. LOCATION PREDICTION ALGORITHMS

In this section, we discuss two domain-independent prediction algorithms, the Markov family and
the LZ family. These algorithms are used for predicting the next location. Once the next location is
known, the history trajectory is now one symbol longer, and the predictor updates its internal tables
in preparation for the next prediction.

3.1. The Markov family

The order-k Markov predictor is independent of time, and it assumes that the current location
depends only on the previous k movements. If the user’s history consists of L D a1a2. . .an, let the
substring L.i; j / D aiaiC1. . .aj for any 1 6 i 6 j 6 n. Then, consider the user’s location as a
random variable X . Let X.i; j / represent the sequence of random variablesXi ,XiC1,. . .Xj for any
1 6 i 6 j 6 n. Then, for all a 2 A (A is the set of all possible locations) and i 2 1; 2; : : : ; n, we
have

P.XnC1 D ajX.1; n/ D L/ D P.XnC1 D ajXn�kC1 D an�kC1; : : : ; Xn D an/

D P.XiCkC1 D ajXiC1 D an�kC1; : : : ; XiCk D an/;
(1)

where the notation P.Xi D ai j : : : / denotes the probability that Xi takes the value ai given the
previous k observations. We can obtain these probability values by a transition probability matrix
M . Both the rows and columns of M are indexed by length-k strings from Ak so that P.XnC1 D
ajX.1; n/ D L/ D M.s; s0/ where s is the string an�kC1an�kC2 : : : an, the current k locations,
and s0 is the string an�kC2an�kC3 : : : ana, the next k locations. As a result, M could provide the
probability for each possible next symbol of L.
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Because we do not know M , let N.s0; s/ donate the number of times that substring s0 occurs in
the string s. For each a 2 A, we can estimate the M by the following equation

P.XnC1 D ajL/ D
N.an�kC1 : : : ana;L/

N.an�kC1an; L/
: (2)

Here, the order-k Markov predictor predicts the symbol a 2 A with the maximum probability
P .XnC1 D ajL/. Note that if the next location q has never occurred in the history, the order-k
Markov predictor makes no predictions.

3.2. The LZ family

The algorithms of LZ family are often used for text compression; they are able to make real time
predictions and do not need many resources. We focus on three algorithms of LZ family: LZ, LeZi
Update and Active LeZi. These three algorithms are domain independent. Like order-k Markov
predictor, the algorithms of LZ family consider each location as an independent symbol. The history
locations that the user visited are made of a symbol string. In order to predict the next location, the
algorithms of LZ family build a tree to record the frequency of occurrence for each kind of user’s
mobility patterns. Different algorithms of LZ family build non-identical trees based on distinct rules.
The prediction results vary with different trees, so does the total consumption of resources during
the prediction.

3.2.1. LZ algorithm. Let r be the empty string and L the input movement history. The LZ algo-
rithm partitions the L into substrings s0s1 : : : sm such that s0 D r , for all j > 1 the substring sj
without its last character is equal to some previous si , for all 0 6 i < j . The partitioning is per-
formed sequentially, so that when each si is determined, the algorithm considers only the remainder
of the input string. As for the movement history L D abcdacbdacadef , L is divided as follows:
a; b; c; d; ac; bd; aca; de; f . Then we build an LZ tree to describe the algorithm. LZ tree is dynam-
ically growing during the partitioning process. Each node of the LZ tree represents a substring si ,
and the statistics are stored at each node to mark the number of times the substring appeared, as
shown in Figure 1.

In order to predict user’s next location, we calculate the probability for each known substring.
Vitter and Krishnan [30] considered the generator L as a finite-state Markov source, and the next
symbol is only dependent on its current state. The approach for estimating the probability can be
expressed as

P.XnC1 D ajL/ D
NLZ.sma;L/

NLZ.sm; L/
; (3)

where NLZ.l; L/ denotes the frequency of the substring l occurs in the LZ tree, and the LZ algo-
rithm chooses the symbol with the highest probability as the prediction results of next location. The

Figure 1. LZ tree for the example movement history L D abcdacbdacadef .
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same as order-k Markov predictor, LZ algorithm is not able to make any prediction when smC1 did
not occur before. What is more, when we build an LZ tree, the patterns contained within substrings
and between two partitioned substrings are lost.

3.2.2. LeZi Update algorithm. Bhattacharya and Das [12] improved LZ algorithm by adding the
partition substring and all the suffixes of each substring to LeZi Update(LZU) tree. Therefore, the
patterns contained within substrings can be captured and used for prediction. As a result, we could
divide the movement historyL as follows: a; b; c; d; ac¹cº; bd¹dº; aca¹ca; aº; de¹eº; f . Here, the
substrings outside the brackets are the partition results of LZ tree and the ones inside the brackets
are the new patterns that LZU tree introduced.

LeZi Update algorithm uses Prediction by Partial Matching (PPM) [31] to calculate the proba-
bility for each known substring. PPM only considers the last substrings outside the brackets as the
prediction context (the longest substring that starts by the last symbol of L). Let k be the length of
this prediction context, sm.k/, and we have the following recursive equation:

P.XnC1 D a/ D Pk.a/ D P.ajsm.k//C P.escjsm.k// � Pk�1.a/; (4)

where P.ajsm.k// is the probability of a (the next symbol) given sm.k/, and P.escjsm.k// is the
escape probability (the probability of sm.k/ that is not followed by any symbol). In addition, the
probabilities of every lower orders (sm.k�1/ up to sm.0/) need to be calculated. Here, the lower
order of sm.k/ is sm.k�1/, which is the substring sm.k/ removing the last symbol, and the length of
sm.k�1/ is k � 1. In addition, LeZi Update algorithm applies the exclusion technique, which means
that it only considers the number of times the substring sm.k/a (instead of the substrings start with
sm.k/a) occurs when counting the pattern.

Comparing with LZ algorithm, LeZi Update algorithm extracts more information from user’s
history movement and takes into account more patterns during the probability estimations process.

3.2.3. Active LeZi algorithm. Gopalratnam [13] further improved the LeZi Update algo-
rithm by using a variable length window to obtain the consecutive parsed patterns of
user’s history movement and build the Active LeZi (ALZ) tree. The length of the win-
dow will increase if the longest pattern parsed by LZ algorithm at the current step
is longer than the last step. And all the suffixes for substring at each step are also
added to the ALZ tree. As last, the movement history L can be divided as follows:
a; b; c; d; a; ac¹cº; cb¹bº; bd¹dº; da¹aº; ac¹cº; aca¹ca; aº; cad¹ad; dº; ade¹de; eº; def ¹ef; f º.
Here, the ones inside the brackets are the suffixes of substring at each step.

Active LeZi uses PPM algorithm to calculate the probability, but it does not apply the exclusion
method. For example, Active LeZi considers the number of times sm.k/a occurs plus the number of
times sm.k/a occurs as a prefix among the substrings s0s1 : : : sm when counting the pattern.

4. EXPERIMENT

In this section, we evaluate the Markov and LZ-based prediction algorithms. We want to find out
which algorithm performs better in prediction of the next location in the LTE network.

Firstly, we introduce the data set by a brief overview of 4G cellular data network architecture and
how the data is collected from network. Secondly, the method for extracting mobility trajectories
from traffic data is also illustrated. Then, we evaluate Markov and LZ prediction algorithms from
the prediction accuracy and resource consumption point of view. Finally, we provide qualitative and
quantitative comparative assessments of Markov and LZ-based prediction algorithms and schemes
in the literature.

4.1. Data collection

In this paper, the traffic data are from a large Chinese 4G service provider collected from October
10, 2013 to October 31, 2013. The high level view of an LTE mobile network with traffic data
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Figure 2. LTE network architecture. User Equipment (UE), Radio-Access Network (RAN), Evolved Packet
Core (EPC), Traffic Monitoring System (TMS), Mobility Management Entity (MME), Serving GateWay
(SGW & PGW) & Packet Data Network (PDN) GateWay, DataBase (DB), Hadoop Distribute File System

(HDFS)

capture device is shown in Figure 2. There are three major components in the LTE mobile network:
the User Equipment (UE), Radio-Access Network (RAN) and Evolved Packet Core (EPC).

(i) UE is any device used directly by an end-user to communicate. It can be a smart phone, a
tablet, a laptop computer equipped with a mobile broadband adapter or any other device;

(ii) RAN establishes the connection between UE and EPC. It uses a flat architecture with multiple
evolved Node Bs, which is like a base transceiver station in GSM networks. The eNodeB is
the hardware that is connected to the mobile phone network that communicates directly with
mobile handsets (UEs);

(iii) EPC is a packet-only core network. The EPC will serve as the equivalent of LTE Service
networks via the Mobility Management Entity (MME), Serving GateWay (SGW) and Packet
Data Network (PDN) GateWay subcomponents.

As mentioned earlier, the data sets used in this study are collected by our Traffic Monitoring
System (TMS) and this device has been deployed in the production networks by several Internet
Service Providers (ISPs) for traffic monitoring purposes, which is deployed between eNodeBs and
MME.

LTE control-plane data has been collected from a large Chinese ISP that owns a large city area
network in Southern China. The collected data set is composed of a sequence of time-stamped
records, each of which contains current service eNodeB Internet Protocol (IP), signaling procedure
Code, International Mobile Equipment Identity (IMEI) and so on. After extracting eNodeB IP-
based location trajectories of every individual during the Evolved Packet System (EPS) Connection
Management (ECM)-CONNECT state, we associate the connection establishment produce, path
switch procedure and handover procedure with connection release procedure of a certain user in
huge volume of data set. The data is stored in a DataBase (DB) and periodically uploaded by an
Uploader to Hadoop Distribute File System (HDFS) [32].

For the security reason, users’ privacy information is replaced by a hashed number, which could
be used for marking subscribers, without affecting the usefulness of our analysis.

4.2. Mobility trajectories

In this paper, we use the longitude and latitude of eNodeBs to define users’ location. The informa-
tion of the eNodeBs users access can provide rough location data of the users, which, however, is
sufficient for capturing people’s daily movement patterns in a large city area.

While a UE is in active state, its location is known by the LTE network. However, while the UE
is in idle state, its location is known by the LTE network every time that UE send a tracking area
update request.
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When a user accesses to LTE network, the locations of eNodeBs the user attach are marked as his
or her trajectory. If the user does not access to the LTE network, UE in state Evolved Packet System
(EPS) Mobility Management (EMM)-REGISTERED shall initiate the tracking area updating pro-
cedure by sending a tracking area update request every 12 min. That is to say, we can obtain the real
movement of a user when he or she accesses to the LTE network. However, when he or she does not
connect to the LTE network, we can only update the user’s current location every 12 min.

We select at random 200 trajectories (users) among 3474 trajectories. The average online time for
these 200 users is 91 h. There are 729 eNodeBs in the area. On average, users visited 48 eNodeBs
in 20 days and the most active user visited 249 eNodeBs. Note that those who only visited only one
eNodeB in 20 days are excluded from our data set, because the position prediction for those users
is meaningless.

Here, we consider only the changing of location (the different eNodeB) when extracting the tra-
jectories of users, for example, we record the location of the eNodeB only when the user switches
to another eNodeB, and the locations of eNodeB that the user attached from the trajectories. The
location of an eNodeB is considered as the next movement of the user only when user switches to
that eNodeB, and no new location is added to the trajectories unless the user switches to another
eNodeB. In this case, no matter how long the time that the user stays in one eNodeB, the trajectories
of this user would not change as long as he or she does not switch the eNodeB.

Note that the time that the user switches to the next eNodeB is also recorded. Therefore, temporal
features of users’ movement are available.

4.3. Performance evaluation

This section offers methodology and background information regarding our experimental evalua-
tions. In particular, we discuss the method by which we gauge model accuracy, the comparison of
prediction results between different kinds of trajectories, and the resource consumption for different
algorithms.

The results in this section are obtained with two Intel Xeon E5620 2.40 GHz CPU (eight-core for
each CPU) with four 4 GB 1333 MHz memory and 4 TB hard disk computer.

4.3.1. Prediction accuracy. The most common statistical metric for evaluating Markov and LZ
algorithms to predict the users future movements is the probability of correct predictions. For each
individual, if the size of symbolic locations is m, we use the first n locations to predict the n C 1
location (1 < n < m). Note that, Markov and LZ algorithms will inevitably encounter the situations
that they are unable to make a prediction. If the predictor returns ‘no prediction’, it is counted as
an erroneous prediction. In addition, in this section, we consider only the first 1500 moves of each

Figure 3. The average accuracy of each algorithm for each location varies over the course of user’s history.
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user’s history movement because it is enough to capture the difference between different prediction
algorithms and posses more details regarding the changing of prediction accuracy.

We run each user’s trace independently with Markov, LZ, LeZi Update and Active LeZi algo-
rithms, respectively. For each location in the trace, the algorithm makes a prediction about the next
location. Firstly, we define the accuracy of each predictor for each location to be the fraction of users
for which the algorithm correctly identified the next location. Then we obtain the average predic-
tion accuracy for each predictor at each location. Figure 3 shows how the prediction accuracy varies
over the course of users history for each prediction algorithms.

In Figure 3, we can see clearly that the accuracy of Markov start growing quickly but stop
increasing so fast at a lower level, achieving slightly lower accuracy than Active LeZi in the end.
And the accuracy of LZ and LeZi Update algorithms increases relatively slowly during the whole
prediction process.

In Figure 4, we draw that the prediction accuracy varies over the course of one user’s history. We
want to study the difference between different prediction algorithms for each location, for example,
the fraction of correct prediction from the first move to the current move for a particular user. Thus,
for each location, the accuracy of user is the number of actual next location matches for history
movement divided by the total number of location changes. It is observed that LZ predictor is the
worst, and Active LeZi predictor beats Markov predictor after the number of user’s history move is
more than 800.

In addition, we further study the distribution of prediction accuracy in each move (the average
prediction accuracy from the first move to 1500 moves for each user) for each prediction algorithm,
as shown in Figure 5. Obviously, Markov algorithm outperforms others that 85.5% of users achieved
50% accuracy, and in the case of LZ, LeZi Update and Active LeZi algorithms, the percentage of
users is 0%, 8.5% and 79%, respectively.

The size of the user’s history movement is directly linked to prediction accuracy, especially when
the historical trajectory is very short, which can be observed at the beginning of predication in
Figure 3. Limiting the size of the user’s movement history leads to loss of information and results in
false predictions. As it can be observed in Figures 3, 4 and 5, if user’s movement history is relatively
short, Markov algorithm shows the best ability to predict. The Active LeZi algorithm outperforms
others after a while because enough consecutive parsed patterns could be obtained when the ALZ
tree is big enough (built from more than 800 history movements in our case).

4.3.2. Resource consumption. Mobile phone resources can be classified into computation, memory,
and input and output (I/O) to storage. A prediction algorithm can run slowly if any of these resources
perform badly. High CPU utilization is the result of intensive computation, and it tends to consume

Figure 4. Comparing the accuracy of Markov with that of LZ, LeZi Update and Active LeZi algorithms for
a sample user.
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Figure 5. The distribution of prediction accuracy of Markov, LZ, LeZi Update and Active LeZi algorithms
for a sample user.

Figure 6. CPU utilization for each prediction algorithms.

more power. The amount of memory available on the prediction is another potential bottleneck that
can have significant effects. What is more, disk I/O throughput can become a bottleneck if there are
too much data to be analyzed. Our goal is to consume as few resources as possible and spend as
little time as possible during the prediction.

Note that the performances of different mobile phones with different brands, different models or
different battery capacities are very different. We have not tested the power expenditure of prediction
algorithm on all kinds of mobile phone. However, the results in this section can still be a reasonable
reference for the service provider.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2016; 29:2169–2187
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Figure 7. Memory utilization for each prediction algorithms.

Table I. Some metrics for a sample user.

Prediction algorithm The number of nodes Time Quantified CPU Prediction accuracy

Markov – 1.39 s 24.55 0.553
LZ 433 1.01 s 9.91 0.364
LeZi Update 1496 16.19 s 766.44 0.492
Active LeZi 3194 32.04 s 1097.18 0.6

In order to examine the power expenditure of the Markov family and the LZ family, we examine
the resource utilizations of each prediction by collecting the quantitative results from executing the
prediction algorithms. In our case, we consider only two resources, including CPU (user, system and
iowait) and memory (used, buffer and cache). Disk I/O utilization would not become a bottleneck
in that there would not be many reading and writing operations. Figures 6 and 7 show the timeline-
based CPU and memory utilizations of each prediction algorithms during the predicting process for
200 users.

Markov algorithm consumes many CPU resources and very little memory resources during pre-
diction. For LZ-based algorithms, the whole prediction process could be split into two phases–tree
building and probability calculation. The first one, tree building process, takes care of updating the
pattern tree. Hence, this process is tightly coupled with memory consumption. The second step,
which is in charge of calculating probabilities, depends on the complexity of the method used. How-
ever, these two phases cannot be clearly distinguished by CPU and memory resources consumption.
As we can observe in Figures 6 and 7, CPU resources are the main bottleneck for all prediction algo-
rithms. Note that prediction process only uses one CPU core of 16 CPU logical cores. Therefore, as
for a multi-core phone, parallel computing of prediction algorithms may improve the computational
efficiency.
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In addition, we further quantify the resource consumption of CPU during the prediction by sam-
pling the CPU usage in clock cycles of a prediction job. The total CPU usage in clock cycles of the
prediction algorithm is calculated as

cpu D fclock �

NX

iD1

Ci ; (5)

where fclock is the CPU clock frequency, N is the number of seconds that the prediction algo-
rithm spent and Ci is the value of CPU utilization at i th second during the running of prediction
algorithm. The total CPU usage among with some other metrics of each prediction algorithm for a
sample user is shown in Table I.

Here, all the metrics in Table I are calculated when the predictions of 1500 history locations are
completed. Overall, LZ algorithm is the most energy saving predictor, and the Markov algorithm
achieves the best prediction accuracy when we consider the whole 1500 history locations. The LZ-
based algorithms build the LZ, LZU or ALZ tree during the prediction. That is no doubt that the
ALZ tree has the largest number of nodes because the patterns captured by Active LeZi algorithm is
much more than that of LZ and LeZi Update algorithms. Therefore, Active LeZi algorithm spends
the longest time on prediction and consumes the most CPU resources among others.

As a result, Markov algorithm seems to be a better choice when predicting the next location in
LTE network. When the ALZ tree is big enough (built from more than 800 locations in our data
set), Active LeZi algorithm can achieve the best prediction accuracy among others, yet the resource
consumption is too much.

In conclusion, we can obtain the best trade off in the following way.

(1) Obtain the encounter value, for example, the value of y-axis (number of location change) when
the logarithmic trendlines for Markov algorithm and Active LeZi algorithm encounter with
each other.

(2) When the number of history locations is smaller than the encounter value, Markov outperforms
other prediction algorithms in resource consumption and prediction accuracy.

(3) When the number of history locations is smaller than the encounter value, Markov is still
the better choice because of the low resource consumption. However, user can also apply the
Active LeZi algorithm to obtain the better results on the cost of high resource consumption.

5. PREDICTION METHOD FOR INDIVIDUAL

In the previous section, Markov prediction algorithm outperforms the algorithms in LZ family. In
order to improve the prediction accuracy without increasing too much computational complexity, we
further take the user mobility characteristics and temporal factors into account during the prediction.
In this section, we group users according to their temporal and spatial characteristics. Our goal is to
study the difference between users’ movement pattern and predict not only the user’s next location
but also the place he or she most likely visits within a specific period of time with relatively low
resource consumption.

5.1. User groups

Intuitively, different users tend to have different routine pattern and a user’s current location should
correlate with time. For example, workers usually follow daily pattern in the weekdays and move
more randomly in the weekends. For travelers, their visiting locations are more random. Hence,
some users’ movement patterns are more predictable while others are difficult to predict. In order
to identify user groups according to their temporal and spatial characteristics, we discretize day into
24 time segments, each segment lasts 1 h long, as shown in Table II.

Here, we consider only weekdays and weekends instead of considering each day of the week
(Monday, Tuesday, : : : , Sunday) separately. More specific, segment 0 in weekdays contains the
time segment between 0:00–0:59 a.m. of Monday to Friday and segment 23 in weekends is the time
segment between 11:00–11:59 p.m. of Saturday and Sunday.
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Table II. Time segment of the
corresponding time interval.

Time segment Time interval

0 0:00 � 0:59
1 1:00�1:59
2 2:00�2:59

. . . . . .
22 22:00�22:59
23 23:00�23:59

Then we record the total duration each user spends at a certain location for each time segments in
weekdays and weekends, respectively. If a user follows the similar movement pattern (go to work
in the morning and go home at night) in weekdays, we can identify the user’s most significant
locations for each time segment, yet there have been no long time staying location for users with
random pattern. In order to describe the diversity of users’ movement patterns, we use entropy as
the metric. Entropy is probably the most fundamental quantity capturing the degree of predictability
characterizing a time series, which is defined as follow:

H.X/ D

nX

iD1

p.xi /I.xi / D �

nX

iD1

p.xi / logb p.xi /; (6)

where n is the number of different locations user visited in one time segment, each different i
represents different locations the user visited in one time segment, and b is a constant value. p.xi /
is the probability for user staying in a certain place in one time segment, and

p.xi / D
total t ime duration user staying in location i in current t ime segment

total t ime duration user staying in current t ime segment
: (7)

The bigger the entropy value is, the more locations the user visits in current time segment, for
example, the more the uncertainty for this user’s being at a specific location at a certain time. In
contrary, a small entropy value implies that the user visits very limited number of locations in current
time segment. For each user, we build two entropy vectors: the entropy value for each of 24 segments
in weekdays and weekends, respectively.

Eweekday D Œeweekday=segment0; eweekday=segment1; : : : ; eweekday=segment23� (8)

Eweekend D Œeweekend=segment0; eweekend=segment1; : : : ; eweekend=segment23� (9)

Considering the correlation between location and time, we group users by clustering them with
k-means clustering. In our case, k is empirically set to be equal to 3 to distinguish main group with
distinct mobility pattern. We give each cluster a label, which intuitively describes the properties
users’ mobility pattern as shown in Figure 8. Here, we use the entropy profiles to describe the
diversity of users movement patterns varying with time.

(i) Normal post person: during the day he or she spends time at various locations, and after 6
p.m., the entropy obtains lower with the decreasing of user’s activity;

(ii) Hard post person: during the day he or she spends time at various locations, and entropy is
relatively higher than other types of person, yet he or she would not rest until 10 p.m. at night;

(iii) Family person: his or her entropy is low in that he or she visits limited location during the day.

In Figure 8, we can clearly see that the difference of entropy profiles for each type of user in
weekdays and weekends is not quite significant.
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Figure 8. The entropy profiles of three different types of users.

Figure 9. Spatial probability distribution of a normal post person’s locations.

5.2. Spatial probability distribution

In order to further illustrate the mobility pattern for each type of users in different time frame, we
divide the data into four sample sets based on their time interval: work hours of weekdays (8 a.m.
to 5 p.m., Monday–Friday), non-work hours of weekdays (5 p.m. to 8 a.m., Monday–Friday), work
hours of weekends (8 a.m. to 5 p.m., Saturday and Sunday) and non-work hours of weekends (5 p.m.
to 8 a.m., Saturday and Sunday). We calculate and compare the two-dimensional probability distri-
bution of three types of users’ locations for these four time intervals. The spatial (two-dimensional)
probability distribution of three sample users’ location is depicted in Figures 9 (normal post person),
10 (hard post person) and 11 (family person).
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Figure 10. Spatial probability distribution of a hard post person’s locations.

Individuals display significant regularity, as they return to a few highly frequented locations, as
home or work. In Figure 9, a sampled normal post person, during the work hours he or she spends
time at various locations, likely starts from places close to office in the morning then moves around
and then comes back to office. During the non-work hours, he or she spends much of his or her
time at home. He or she stays at home or moves not far from the home on weekends. Yet, there is
no clear temporal pattern for the sampled hard post person in Figure 10. In addition, the sampled
family person in Figure 11 has the most regular pattern (go to the office during work hours, stay at
home during non-work hours and work overtime at office on the weekends).

Among distinct types of persons, mobility pattern varies during different periods in a day. This
spatial distribution is the characteristic that models a user’s mobility and can be used for the location
prediction. This feature changes significantly between the two temporal conditions (work hours and
non-work hours) and quantifies the probability of user’s presence at home, office and some other
locations. Furthermore, family person shows a more gather distribution of the user’s presence during
different time frame.

5.3. Spatio-temporal based prediction

After investigating the spatial and temporal features of different groups of users with distinct mobil-
ity pattern, in this section, we try to take temporal features into account to improve the accuracy
of prediction for different groups of users with keeping the task of location prediction simple and
avoiding highly computational complexity at the same time. We want to predict not only users’ next
location but also the place he or she most likely being within a specified period.

We further calculate location entropy and radius of gyration [19] for family person, normal post
person and hard post person, as shown in Table III.
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Figure 11. Spatial probability distribution of a family person’s locations.

Table III. Some metrics for measuring the predictability of
family person, normal post person and hard post person.

User type Location entropy Radius of gyration

Family person 0.85 0.21
Normal post person 2.98 0.36
Hard post person 2.77 0.44

When the location entropy becomes smaller, the uncertainty that user appears at one location at
a specific time is also lowered. It is the same for the radius of gyration, which measures the size of
the footprint of a user. Here, we employ a spatio-temporal based location prediction method. Firstly,
we obtain the probability distribution of visited location for each segment (e.g., discretize day into
24 time segments, each segment lasts 1 h long, as shown in Table II). Then the location with highest
probability in a particular segment is the most probable location in that segment for the next day.
We use 10 day-long history trajectory to predict the most likely place he or she will be for each hour
of next day. Finally, family person achieves 83.3% (4 wrong prediction and 20 right prediction for
24 segments in a day) accuracy.

In addition, we further study the credibility of the spatio-temporal based prediction method. We
obtain the most probable location according to the probability distribution of each segment for the
first 10 days. Then we calculate the probability distribution of each segment for the next 10 days.
If we have a as the most probable location in segment i in the first 10 days, then we can obtain the
probability that user visits a in segment i in the next 10 days, as shown in Figure 12.
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Figure 12. The probability that user visits the prediction location in each segment.

Figure 13. The average accuracy of each algorithm for each location varies over the course of post person’s
history.

Obviously, for those who are in the two-line life of ‘at work’ and ‘home’ (family person), their
movements are more predictable than others, and the spatio-temporal based prediction method
works well. Family person tends to stay in the same location (office) between 4 p.m. and 5 p.m. in
the afternoon. The most probable location for the segments between 5 a.m. and 9 a.m. is very hard
to predict when he or she is on the way to the office. However, as for normal post person and hard
post person, the spatio-temporal based prediction method goes worse.

In Figure 12 and Table III, we can clearly see that the differences between family persons and
post persons (both normal post persons and hard post persons) are bigger than that of normal post
persons and hard post persons. As a result, we further applied Markov family and LZ family to 200
randomly selected post persons, in order to examine the prediction accuracy of these algorithms, as
shown in Figure 13.

Comparing the logarithmic trendline of Figure 13 with Figure 3, the prediction accuracy at
1500th location for post person is higher than that of all users. We further calculate the statistical
characteristics for post persons and all users, as shown in Figure 14.
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Figure 14. The 95% confidence intervals and the mean values of prediction accuracies for post persons and
all users.

Figure 14 illustrates the 95% confidence intervals (the horizontal line) and mean value (the red
cross between two horizontal lines) of prediction accuracies. Comparing post persons with the total
users, the mean value of prediction accuracy for Markov algorithm is improved from 0.5255 to
0.5576, and in the case of Active LeZi algorithm, the mean value increased from 0.4923 to 0.5335.
From these statistical characteristics, we can conclude that the next location algorithms (Markov
and Active LeZi) are more suitable for post persons, and users with distinct mobility pattern should
be applied to different predicting methods.

In conclusion, spatio-temporal based prediction method is more suitable for family person who
visits very limited locations during the day and follows regular pattern during the week. For those
who spend much time on commute and follow fairly regular pattern during the week (post person),
the next location prediction is more efficient.

6. CONCLUSIONS

In this paper, by using the real users’ trajectories collected from LTE network in a city area of south
China, we studied the simple location prediction algorithms with low resource consumption that
could be applied on mobile device.

Findings
We introduced two families of domain-independent prediction algorithms, the Markov algorithm

and the LZ-based algorithms to predict the next location. By applying these prediction algorithms
to our data set, we found that the Markov algorithm achieves the best accuracy at the beginning of
prediction, achieving a little lower accuracy than Active LeZi in the end. The Active LeZi algorithm
outperformed Markov when the length of history trajectory is more than 800. And the accuracy of
LZ and LeZi Update algorithm increased relatively slowly during the whole prediction process.

For resource consumption, CPU resource is the main bottleneck for all the prediction algo-
rithms. After quantifying the resource consumption of CPU during the prediction, we found that
although Active LeZi achieved the highest prediction accuracy, it spent the longest time on pre-
diction and consumed the most CPU resources among all algorithms. When predicting the next
location, Markov algorithm provided the best tradeoff between prediction accuracy and resource
consumption.

Then, in order to improve the prediction accuracy, we classified users into three different groups
(normal post person, hard post person and family person) according to their distinct entropy profiles
and examined the mobility patterns for each type of users in different time frame. We found that
spatio-temporal based prediction method achieved 83.3% accuracy for family person. However, as
for post person, the next location prediction algorithms are more suitable. Comparing post persons
with the total users, the mean value of prediction accuracy for Markov algorithm was improved from
0.5255 to 0.5576, and in the case of Active LeZi algorithm, the mean value increased from 0.4923
to 0.5335.
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Implications
Regarding user’s location prediction on mobile device, in order to obtain the tradeoff between

prediction accuracy and resource consumption, we should consider applying different prediction
methods to users with distinct mobility pattern. For those who visit very limited locations during the
day and follow regular pattern during the week, spatio-temporal based prediction method is more
effective so that it can provide not only user’s next location but also the place he or she most likely
visiting within a specified period with high accuracy. For those who spend much time on commute
and follow fairly regular pattern during the week (post person), the next location prediction is more
efficient.

Future work
Different prediction method should be applied to different users with distinct mobility patterns

and spatio-temporal characteristics. Most users have the division between work hours, nights, week-
ends and commute hours in common. However, the hours of the day that define work hours, nights,
commute hours or weekend irregularities can be different from one user to another. In the future, we
will try to investigate the more effective grouping methods to accurately classify users by extracting
the mobility pattern and spatio-temporal characteristics. In addition, more effective and user-based
prediction algorithms with high prediction accuracy and lower resource consumption are expected.
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